Enhancing Low-back Health through Stabilization Exercise

By Stuart M. McGill, Ph.D.,
Professor (Spine Biomechanics), University of Waterloo

Background Perspective

Appropriate exercise design for the low back cannot be achieved with pamphlets showing suggested exercises. Some people with a history of back troubles desire pain relief and spine stability (a health objective) while others may seek a performance objective (which may be counterproductive to optimal back health). Some people need more stability while others may need more mobility. Some exercises will exacerbate the back troubles of some people but may help others. Because each individual has different needs, various assessment approaches should be utilized to aid in subsequent decisions for exercise design. Further, proficient exercise professionals will need an understanding of the issues, and of the myths and realities pertaining to each issue, to form a foundation for the decision process. The focus here is to briefly introduce a few selected issues, followed by an example of a quantified and evidence-based exercise program.

Rather than provide thin background material that will not be robust enough to assist the exercise design process (the book is necessary to serve that purpose), I have decided to offer some initial food for thought. There is no shortage of manuals and books offering wisdom on the topic of low-back health written by authors with a wide spectrum of backgrounds, ranging from formal medical or rehabilitation training to lay people who found an approach to alleviate their own back troubles and have become self-proclaimed prophets “believing” that others will benefit. Their intentions are honorable, but their advice is rarely based on a sound scientific foundation. In my opinion, too many of these books offer inappropriate recommendations or even harmful suggestions. Years ago, as I began to develop scientific investigations into various aspects of understanding low-back problems, I would ask my graduate students to find the scientific foundation for many of the “common sense” recommendations I was hearing both in the clinic and in industrial settings. To my surprise, they would report that the literature yielded no, or very thin, evidence.

Examples of such “common sense” recommendations include the following:
• Bend your knees when performing sit-ups.
• When performing a lift, bend your knees and keep your back straight.
• Reducing the load throughout the workday will reduce the risk of back troubles. In fact, the benefit of each of these has been shown to be highly questionable.

It is widely believed that stretching the back and increasing the range of motion is beneficial and reduces back problems—however, the scientific evidence shows that, on average, those who have more range of motion in their backs have a greater risk of future troubles. Clearly there is a tradeoff between mobility and stability; the optimal balance is a very personal and individual variable. Indeed, the “stability/mobility balance” may shift during a progressive exercise program as symptoms resolve, with advancing age, or as rehab/training objectives change. Another generally perceived goal of training the back is to increase strength. Strength has little association with back problems, I would ask my graduate students to find the scientific foundation for many of the “common sense” recommendations I was hearing both in the clinic and in industrial settings. To my surprise, they would report that the literature yielded no, or very thin, evidence.

Recent investigations into injury mechanisms have revealed that many back-training practices actually replicate the loads and motions that cause parts of the low back to become injured. For example, disc herniations need not have excessive loading on the back to occur; rather, repeated forward flexion motion of the spine is a more potent mechanism. Thus, if full flexion or deviation is avoided in the spine, the risk of herniation is remote. But for most fitness professionals the link between injury and exercise needs to be better developed.

Injury is caused by damage to supporting...
Enhancing Low-back Health through Stabilization Exercise

Continued from page 3

tissues. This damage reduces the normal stiffness in the spine, resulting in unstable joints. Thus, while injury results in joint instability, an event characterized by improper muscle activation can cause the spine to buckle or become unstable. There is no question that excessive loading can lead to back injury, but instability at low loads is also possible and problematic. For example, it is possible to damage the passive tissues of the back while bending down and picking up a pencil, or sneezing, if sufficient stability is not maintained. Some people recommend that when training, one should exhale upon exertion (when weight training, for example, exhaling upon the lifting phase and inhaling on the lowering). In terms of grooving stabilizing motor patterns for all tasks, this is a mistake. Breathing in and out should occur continuously, and not be trained to a specific exertion effort—this helps to maintain constant abdominal muscle activation and ensure spine stability during all possible situations. (The opposite is true for maximal effort competitive lifting where aValsalva maneuver with the breath held is necessary, but performance training is not the emphasis here.)

Further, specific muscle activation patterns are essential to avoid injury but have also been documented to become perturbed following injury. Pain is a powerful instigator in the deprogramming of normal/healthy

A Daily Routine for Enhancing Low-back Health

The following exercises have been chosen to spare the spine, enhance the muscle challenge and enhance the motor control system to ensure that spine stability is maintained in all other activities. Having stated this, they are only examples of well-designed exercises and may not be for everyone—the initial challenge may or may not be appropriate for every individual nor will the graded progression be the same for all clients. These are simply examples to challenge the muscles of the torso.

∑ Curl-up

The cat-camel motion exercise is followed by anterior abdominal exercises, in this case the curl-up. The hands or a rolled towel are placed under the lumbar spine to preserve a neutral spine posture. Do not flatten the back to the floor. Flattening the back flexes the lumbar spine, violates the neutral spine principle and increases the loads on the disc and ligaments. One knee is flexed but the other leg is straight to lock the pelvis-lumbar spine and minimize the loss of a neutral lumbar posture. Alternate the bent leg (right to left) midway through the repetitions.

Cat-Camel

The routine should begin with the cat-camel motion exercise (spine flexion-extension cycles) to reduce spine viscosity (internal resistance and friction) and “floss” the nerve roots as they outlet at each lumbar level. Note that the cat-camel is intended as a motion exercise—not a stretch—so the emphasis is on motion rather than “pushing” at the end ranges of flexion and extension. Five to eight cycles have shown to be sufficient to reduce most viscous-frictional stresses.

Birddog

The extensor program consists of leg extensions and the “birddog.” In general, these isometric holds should last no longer than seven to eight seconds given recent evidence from near infrared spectroscopy indicating rapid loss of available oxygen in the torso muscles when contracting at these levels; short relaxation of the muscle restores oxygen. The evidence supports building endurance with increased repetitions rather than extending “hold time.”
motor patterns and the creating of perturbed patterns. The exercises and programs described here are based on the latest scientific knowledge of how the spine works and how it becomes injured. In addition, they have been quantified for spine load, resultant spine stability and muscle oxygenation, to name a few. These are only a few examples to begin a program. The goals are to enhance spine stability by grooving motion and muscle activation patterns to prepare for all types of challenges. Of course, other exercises may be required subsequently to enhance daily functioning, but once again, these will depend upon the characteristics and objectives of the individual.

Two other concepts must be emphasized at this point. First, training approaches intended to enhance athletic performance are often counterproductive to the approaches used when training for health. Too many patients are rehabilitated using athletic philosophies or, worse yet, “body-building” approaches designed primarily to isolate and hypertrophy specific muscles, and progress is thwarted. Many bad backs are created from using inappropriate performance philosophies.

Continued on page 6
Enhancing Low-back Health through Stabilization Exercise

Continued from page 5

Identifying the training objectives is paramount. The emphasis here is on enhancing spine health—training for performance is another topic. Second, many of the training approaches that are used at joints such as the knee, hip, shoulder, etc., are mistakenly applied to the back. The back is a very different and complex structure, involving a flexible column, with complex muscle and ligamentous support. The spine contains the spinal cord and lateral nerve roots, and musculature intimately involved in several other functions, including breathing mechanics, to give just one example. Many of the traditional approaches for training other joints in the body are not appropriate for the back—either they do not produce the desired result or they create new patients.

References


YogaFit 1332 Hermosa Avenue, Studio 7, Hermosa Beach, CA 90254
(888) 786-3111 • e-mail: info@yogafit.com

The premiere international yoga training for the fitness industry since 1994—accept no imitations.